Deletions in a dspm insert in a maize bronze-1 allele alter RNA processing and gene expression.

نویسندگان

  • V Raboy
  • H Y Kim
  • J W Schiefelbein
  • O E Nelson
چکیده

The bz-m13 allele of the bronze-1 (bz) locus in maize contains a 2.2-kb defective Suppressor-mutator (dSpm) transposable element inserted in the second exon. We compared bz expression in bz-m13 and five derivatives in which the dSpm insertion had sustained deletions ranging from 2 to 1300 bp. Tissues homozygous for bz-m13 in the absence of Spm-s activity were found to contain from 5 to 13% of the enzymatic activity conditioned by a wild-type allele at the bz locus. Tissues homozygous for the deletion derivatives contained enzymatic activities ranging from less than 1% to 67%. These differences are closely correlated with the steady-state level of one of two alternatively spliced transcripts. In all alleles bz transcription proceeds through the dSpm insert. Subsequent RNA processing uses the donor site of the single bz intron and either one of two alternative acceptor splice sites (AS1 and AS2) located within the dSpm sequence. Use of the AS1 removes all but 2 bp of dSpm sequence and produces the 1.8-kb transcript whose level corresponds closely to the level of enzymatic activity. Use of AS2 produces a transcript which retains more than 600 bp of dSpm sequence. Those derivatives in which AS2 is either deleted or inactivated have substantially increased levels of both the 1.8-kb transcript and enzymatic activity. We therefore document one sequence of events which began with the insertion of a transposable element and resulted in novel and stable introns which retain element-derived sequence and which in certain cases permit substantial host-gene expression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RNA splicing permits expression of a maize gene with a defective Suppressor-mutator transposable element insertion in an exon.

The bz-m13CS9 allele of the bronze-1 gene in maize contains a 902-base-pair defective Suppressor-mutator (dSpm) transposable element in the second exon. Nevertheless, 40-50% of the enzymatic activity conditioned by a nonmutant allele at the bronze-1 locus is routinely recovered in crude extracts prepared from plants carrying bz-m13CS9 in the absence of an autonomous Suppressor-mutator element. ...

متن کامل

Maize bronze 1:dSpm insertion mutations that are not fully suppressed by an active Spm.

The Suppressor-mutator (Spm) family of maize transposable elements consists of autonomous Spm elements and nonautonomous defective Spm (dSpm) elements. One characteristic of this family is that the insertion of dSpm elements into a structural gene often permits some level of structural gene expression in the absence of SpM activity, and this structural gene expression is suppressed in trans by ...

متن کامل

P-157: Polymorphic Core Promoter GA-repeats Alter Gene Expression of The Early Embryonic Developmental Genes

Background: We examine the GA-repeat core promoters of MECOM and GABRA3 in human embryonic kidney-293 cell line and show that those GA-repeats have promoter activity,and those different alleles of the repeats can significantly alter gene expression.We propose a novel role for GA-repeat core promoters to regulate gene expression in the genes involved in development and evolution. Materials and M...

متن کامل

Network-based transcriptome analysis in salt tolerant and salt sensitive maize (Zea mays L.) genotypes

Identification of genes involved in salinity stress tolerance provides deeper insight into molecular mechanisms underlying salinity tolerance in maize. The present study was conducted in the faculty of agriculture of Urmia university, Iran, in 2018, with the aim of identifying genetic differences between two maize genotypes in tolerance to salinity stress, and the results of gene expression wer...

متن کامل

Bronze-2 gene of maize: reconstruction of a wild-type allele and analysis of transcription and splicing.

The maize Bronze-2 (Bz2) gene, whose product acts late in the anthocyanin biosynthetic pathway, has been cloned and its transcript has been mapped. We have developed a general procedure for reconstructing wild-type alleles from transposable element-induced mutants. An existing transposon-containing clone, bz2::mu1 [McLaughlin, M., and Walbot, V. (1987). Genetics 117, 771-776], was modified by r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 122 3  شماره 

صفحات  -

تاریخ انتشار 1989